Episodic magmatism of the Peruvian continental arc
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1. Abstract 4. Peruvian Coastal Batholith & Eastern Cordillera age spectra
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Fig. 1. Map of the Peruvian arc showing the Peruvian Coastal Batholith divided into North, Table 2. Total flare-up and lull mantle magma addition volumes. T 200 220 240 260 280 300 320
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dahuaylas-Tambuco shear zone, FPR = Puyentimari fault, FPT = Patacancha Tambuco . . :
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fault, FI = Iquipi fault system. Plutonic and volcanic igneous rock units in the PCB and EC 1030k 118k 1148k Coastal Batholith and the Eastern Cordillera using 80/20 and 50/50 mantle/crust ratios
EC are from the Peruvian Instituto Geoldgico Minero y Metalurgico (INGEMMET, 2021). J '

3. Regional & across arc age spectra 6. Observations, implications and interactive dashboard
I Andean orogenic cycle : Bedrock: n = 641 A Observations | —
- Selection J § niE ol MMA 80/20 (km?) MMA 50/50 (km)
! Detrital: f = 2906 - Low magma volumes e
\ | Bedrock + detrital: n = 3547 » Late Carboniferous and Early to Mid e R O @
= Z— Pampeanas- | Permian (EC)
cC | andea . . MMA rate 80/20 (km?/km2/Ma) MMA rate 50/50 (km?/km2/Ma)
3 200 Z— et g T = | = Jurassic to Early Cretaceous (PCB)
. :S N - High magma volumes h h
| L X ! = Late Permian to Early Triassic (EC) AR
| - . .
;\/ & = Erilg;:liae:O/Pan Ariean Sunsas - Mld Cretaceous (PCB) _ AN Area (kan?)
— :E__ HE N . orogeny Nova Brasilandia San Ignacio : ’ gy | ”q |
0 l B N T 600" — — : :ﬁ m ﬁw o0 ® ® ‘ y , 'f"r, _ i 135k m ""m'ﬁ-k 54k
? 200 400 600 =808 — _ _ 1;(]\090_e (T\Ag) -1230— _ 1_400 1600 1800 2000 |mp||Cat|0nS | :”M L: 3 ___ |
T . Continental crust growth rates o
200~ retaceous-Cenozoic flare-u . . 20
fPCt%: Andea(r:\ cycle mggmatizm) Bedrock: n = 625 B - Assum|ng d manﬂe/CrUSt ratIO Of
Range: 120-40 Ma
Cenozoic flare-up / \ Peak: 65 15 Ma pebrmo Triclsic flarbup Detrital: n = 2231 80/20, the PCB and EC account for a
éii%ﬁ”fo‘?znwfay;e T (EC; Pangea breakup and Bedrbok+detrital: n= 2556 combined MMA volume (flare-ups
Peaks21 + 8 Ma . .
/ \ napas: 2o )e Me Carbo-Permian flare-up and lulls) of ~2218k km? during the Fig. 6. Peruvian Flare-up Explorer — interactive dashboard for
100- // \ Jurassic-Cretaceous flare-up Range: 370-300 Ma e 7] Permian-Paleogene. exploring spatiotemporal patterns in flare-ups in the Peruvian Coastal
= N Peak: 312 + 22 Ma e i = - . . . _
§ \ Range: 200-130 Ma B FangE B V4 \\ - Averages ~6688 km3/My for the PCB Batholith ar?d Eastern Cordl!lera. Selgctlons can be made for flare-up
7 N ) / \ d ~ [T Gl and geological age categories, causing the map to zoom to the
/ ~ / and ~7175 km>/My for the EC. . :
/ I / — < /! \ Thic i buti € 0.8—12% selected features and the gauges to adjust. Gauges display mantle
N \\/' \\\ i \_,-—-..\ DIDE Cont”. ution of ~0.6 - 1.2 % magma addition volumes and rates for 80/20 and 50/50 mantle/crust
o Emm A to global continental crustal growth,  (atio and area covered by igneous rocks. Tables show parameters for
°_____ 0 100 150 200 250 300 350 400 420 500 using the estimates of Hawkesworth  flare-ups and U-Pb age samples.
enozoic  [IIKI T o s eomaaen
Age (Ma) et al. (201 9).
Fig. 2. Igneous bedrock zircon and detrital zircon U-Pb age spectra providing a history of arc magmatism in (A) the entire Peruvian
arc with (B) an expanded view of the Phanerozoic. Peak height does not indicate magma volume and the voluminous Neogene AcC kn owledg ments
volcanism of some areas is excluded. Data are compiled from existing sources and augmented with our new igneous bedrock and
detrital zircon data. Detrital zircon data are individual zircon grains and igneous bedrock ages are sample ages. Orogenies and We would like to thank the Geoscience Research Institute and Loma Linda University Department of Earth and Bio-
supercontinent events are as suggested by Miskovic et al. (2009). logical Sciences for funding this research. We acknowledge support from NSF grants EAR 1649254 and AR-1624854
for the Arizona LaserChron Center, and EAR-0929777 for image acquisitions at the Arizona LaserChron SEM Facility.
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Fig. 3. Across-arc detrital zircon U-Pb age spectra for samples taken from near IcaXPisco (Miocene sandstone), Cusco (Cretaceous
sandstone) and the Amazon just east of the arc (Cretaceous quartzite). Ranges and peaks of flare-ups are in Ma. Orogenies are
from Miskovic et al. (2009)
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